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Abstract. Optimality functions in nonlinear programming conveniently measure, in some sense,

the distance between a candidate solution and a stationary point. They may also provide guidance

towards the development of implementable algorithms. In this paper, we use an optimality func-

tion to construct procedures for validation analysis in stochastic programs with nonlinear, possibly

nonconvex, expected value functions as both objective and constraint functions. We construct an

estimator of the optimality function and examine its consistency, bias, and asymptotic distribution.

The estimator leads to confidence intervals for the value of the optimality function at a candidate

solution and, hence, provides a quantitative measure of solution quality. We also construct an

implementable algorithm for solving smooth stochastic programs based on sample average approxi-

mations and the optimality function estimator. Preliminary numerical tests illustrate the proposed

algorithm and validation analysis procedures.

Keywords: Stochastic programming; nonlinear programming; optimality conditions; validation analysis.

1 Introduction

Stochastic optimization problems arise in numerous context where decisions must be made in

the presence of data uncertainty; see the books [13, 9, 20, 17, 37, 34] and references therein for

algorithms, models, and applications. In this paper, we deal with a class of stochastic optimization

problems defined in terms of expected values of random functions. Let F j : IRn × Ω → IR,

j = 0, 1, 2, ..., q, be random functions defined on a common probability space (Ω,F ,P), with Ω ⊂ IRd

and F ⊂ 2Ω being the Borel sigma algebra. Moreover, let the expected value functions f j : IRn →
IR ∪ {−∞,∞} be defined by

f j(x)
4
= E[F j(x,w)] (1)

for all j ∈ q0
4
= {0} ∪q, with q

4
= {1, 2, ..., q}, where E is the expectation with respect to P. Below

we impose conditions that ensure finiteness of f j(x), j ∈ q0, for all x ∈ IRn of interest. Optimization

problems involving such expected value functions are generally challenging to solve due to the need

for estimating expectations repeatedly during the optimization. Even assessing how “close” a given
∗Tel.: + 1 831 656 2578, fax: +1 831 656 2595, email joroyset@nps.edu.
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candidate point x ∈ IRn is to optimality or stationarity may be nontrivial; see [4] and the review

below. We specifically consider the stochastic optimization problem

P : min
x∈IRn

{f0(x) | f j(x) ≤ 0, j ∈ q}, (2)

where we assume that f j(·), j ∈ q0, are continuously differentiable, but possibly nonconvex. Non-

convex stochastic optimization problems arise in such diverse applications as estimation of mixed

logit models [2], engineering design [29], and inventory control [39]. We focus on the assessment

of a candidate point x ∈ IRn for P , which we refer to as validation analysis, but also consider the

generation of such candidate points by an algorithm.

Stationary points of P are defined by the Karush-Kuhn-Tucker (KKT) or the Fritz-John first-

order necessary optimality conditions; see for example Propositions 3.3.1 and 3.3.5 in [7] or Theorem

2.2.4 in [25]. If the evaluation of f j(x) and ∇f j(x), j ∈ q0, could be accomplished in finite (and

relatively short) time, then it would be possible to verify whether x ∈ IRn is stationary or near-

stationary by solving a convex quadratic program, see, e.g, Theorem 2.2.8 in [25]. In the present

context, however, f j(·), j ∈ q0, are defined in terms of expectations and, as we will see, ∇f j(x),

j ∈ q0, are defined similarly. Hence, f j(x) and ∇f j(x), j ∈ q0, cannot generally be evaluated in

finite time resulting in challenging validation analysis for P .

Previous studies of validation analysis in stochastic programming often deal with special cases

of P . In the case of uncertainty in the objective function only, i.e., F j(·, ω), j ∈ q, are deterministic

functions, [24] and [22] propose procedures for estimating upper and lower bounds on the optimal

value of P . Other efforts to compute bounds on the optimal value include [15, 3]; see also the

tutorial [4]. These procedures are limited to convex problems as they require global minima of

sample average approximations constructed by replacing the expectations in P by their sample

averages, or as they make use of strong duality.

Under the same assumption of deterministic constraints, [35] develops confidence regions for

∇f(x) as well as hypothesis tests for whether a point x ∈ IRn satisfies the KKT conditions; see

also [14]. The results in [35] can be extended to constraints defined in terms of expectations [33],

though that result appears unpublished. The hypothesis tests require that the gradients of the

active constraints are linearly independent, the strict complimentary condition holds at x, and that

the inverse of an estimate of a variance-covariance matrix is nonsingular.

Stochastic programs with chance constraints are outside the scope of this paper (see for example

[21] and Chapter 4 of [34]), but relate to P as they are essentially of the same form as P except that

F 0(·, ω) is deterministic and F j(·, ω), j ∈ q, are indicator functions. For such programs validation

analysis may involve estimating the probability of feasibility for a candidate point as well as the

use of Lagrangian relaxation to obtain bounds on the optimal value; see for example Section 5.7 in

[34] and references therein.

Validation analysis for the full problem P has received less attention. On p. 208 in [34],
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a lower bound on the optimal value of P is proposed based on the Lagrangian function. The

bound, however, may be rather weak in the case of a nonconvex problem. Section 5.2 of [34]

(see also [32, 12, 2]) uses stochastic variational inequalities to analyze optimality conditions for P .

The results include conditions for almost sure convergence of stationary points of sample average

approximations to stationary points of P as the sample size grows. Extension of such results to

second-order optimality conditions are found in [2]. A similar result for the case with a nonsmooth

objective function and deterministic constraints is found in [39].

In Section 5.2 of [34], we find that under the linear independence constraint qualification and

the strict complementarity condition, a stationary point of a sample average approximation with

sample size N is approximately normally distributed with mean equal to a stationary point of P and

with standard deviation proportional to N−1/2. In [30] (see also [31]), we find a hypothesis test for

checking whether a candidate solution and a corresponding Lagrange multiplier vector satisfy the

KKT conditions for the case with both inequality and equalities defined in terms of expectations.

That paper also presents confidence intervals for the constraint functions at a candidate point.

While these results are important, they do not directly quantify the quality of a candidate solution

that is not stationary for a sample average approximation. In practice, we can usually only hope

for a near-stationary solution of P and its sample average approximations. Hence, it becomes

important to assess the quality of such solutions.

In this paper, we develop procedures for validation analysis of a candidate point x ∈ IRn. Since

P may be nonconvex, we focus on first-order necessary optimality conditions as validation analysis

by means of bounds on the optimal value (see [4]) appears difficult. Specifically, as in Section

2.2.1 of [25], we consider Fritz-John conditions for P as characterized by a nonpositive optimality

function which vanishes at feasible stationary points. Hence, the value of the optimality function

at x gives a measure of the quality of x. We specifically provide bounds on the distance between

f0(x) and the optimal value of P in terms of the value of the optimality function at x.

The optimality function involves f j(·) and ∇f j(·), j ∈ q0, and can therefore only be esti-

mated. We develop a strongly consistent estimator for the optimality function at x and examine

its asymptotic distribution and bias. We also develop procedures for estimating probabilistic lower

bounds on the optimality function at x and corresponding confidence intervals. Since the optimality

function is nonpositive and vanishes at a feasible stationary point, such a lower bound provides a

conservative estimate of the quality of x. The lower bounds may also lead to a stopping criterion

for algorithms for solving P . In contrast to the hypothesis tests in [35], which check the KKT

conditions and require linear independence and strict complementary constraint qualifications, we

adopt the more general Fritz-John conditions and require no constraint qualification.

The estimator of the optimality function can be viewed as an optimality function of a sample

average approximation of P in the case F j(·, ω), j ∈ q0, are continuously differentiable for almost all

ω ∈ Ω. We exploit this observation and develop a convergent algorithm for P under this additional
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assumption and a constraint qualification.

In Section 2, we define optimality conditions for P in terms of an optimality function and show

how that function measures the distance to the optimal value of P . Section 3 constructs an estimator

for the optimality function, proves its consistency, and derives the asymptotic distribution of an

appropriately scaled and shifted estimator. Section 4 develops procedures for validation analysis by

means of the estimator of the optimality function. Section 5 constructs consistent approximations

and presents an algorithm for P . Section 6 gives illustrative numerical examples.

2 Optimality Function

In this section we state optimality conditions for P , define an optimality function, and prove a rela-

tionship between the optimality function at a feasible point x ∈ IRn and the distance between f0(x)

and the optimal value of P . We adopt the Fritz-John first-order necessary optimality conditions;

see for example Theorem 2.2.4 in [25]. Before we state the conditions, we give assumptions which

ensure that f j(·), j ∈ q0, are finite valued and continuously differentiable. We observe that since

F j(·, ·), j ∈ q0, are random functions, it follows by definition that F j(x, ·), j ∈ q0, are measurable

for every x ∈ IRn.

Assumption 1 We assume that for a given set S ⊂ IRn, the following hold for any nonempty

compact set X ⊂ S and for all j ∈ q0:

(i) There exists a measurable function C : Ω → [0,∞) such that E[C(ω)] < ∞ and for all x ∈ X

and almost every ω ∈ Ω, |F j(x, ω)| ≤ C(ω).

(ii) There exists a measurable function L : Ω → [0,∞) such that E[L(ω)] < ∞ and

|F j(x, ω)− F j(x′, ω)| ≤ L(ω)‖x− x′‖ (3)

for all x, x′ ∈ S and almost every ω ∈ Ω.

(iii) For every x ∈ X, F j(·, ω) is continuously differentiable at x for almost all ω ∈ Ω.

Assumption 1 is rather weak and commonly made in the literature; see for example Theorem

7.52 in [34]. A large number of applications satisfy Assumption 1 including many instances of two-

stage stochastic programs with recourse [17], Conditional Value-at-Risk problems [27], inventory

control problems [39], and engineering design problems [29]. If Assumption 1 holds on an open

set S and X ⊂ S is compact, then it follows from Theorem 7.52 in [34] that f j(·), j ∈ q0, are

continuously differentiable on X and that ∇f j(x) = E[∇xF j(x, ω)], for all x ∈ X and j ∈ q0.

We need the following notation. For any vector v, we adopt the convention that vj ∈ IR denotes

the vector’s j-th component. Let

Σ0
q
4
=

{
µ ∈ IRq+1

∣∣∣∣∣
∑

j∈q0

µj = 1, µj ≥ 0, j ∈ q0

}
, (4)
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ψ(x)
4
= maxj∈q f j(x), and ψ(x)+

4
= max{0, ψ(x)}.

The Fritz-John first-order necessary conditions for P takes the following form; see, for example,

Theorem 2.2.4 in [25].

Proposition 1 If x̂ ∈ IRn is a local minimizer for P and Assumption 1 holds on an open set

S ⊂ IRn containing x̂, then there exists a multiplier vector µ̂ ∈ Σ0
q such that

∑

j∈q0

µ̂j∇f j(x̂) = 0 (5)

and ∑

j∈q

µ̂jf j(x̂) = 0. (6)

We refer to a point x̂ ∈ IRn that satisfies (5) and (6) for some µ̂ ∈ Σ0
q as a Fritz-John point. We

remark that the Fritz-John conditions reduce to the KKT conditions when µ̂0 > 0; see [25], p. 189.

We follow [25], see p. 190, and express the Fritz-John conditions by means of a continuous

optimality function θ : IRn → (−∞, 0] defined by

θ(x)
4
= min

h∈IRn

{
max

{
− ψ(x)+ + 〈∇f0(x), h〉, (7)

max
j∈q

{f j(x)− ψ(x)+ + 〈∇f j(x), h〉}
}

+ 1
2‖h‖2

}
.

We find the following alternative expression for θ(x) useful; see Theorem 2.2.8 in [25]:

θ(x) = − min
µ∈Σ0

q

{
µ0ψ(x)+ +

∑

j∈q

µj [ψ(x)+ − f j(x)] + 1
2

∥∥∥
∑

j∈q0

µj∇f j(x)
∥∥∥
2}

. (8)

Let Xψ
4
= {x ∈ IRn | ψ(x) ≤ 0} be the feasible region of P . The optimality function equivalently

expresses the Fritz-John conditions in the sense stated next; see Theorem 2.2.8 in [25].

Proposition 2 Suppose that x̂ ∈ Xψ and Assumption 1 holds on an open set S ⊂ IRn containing

x̂. Then, θ(x̂) = 0 if and only if there exists a multiplier vector µ̂ ∈ Σ0
q such that (5) and (6) hold.

In view of Proposition 2, the closeness of θ(x) to zero indicates the proximity of x to a Fritz-

John point. Under a convexity assumption, θ(x) also gives a bound on the distance between f0(x)

and the minimum value of P as the next result shows. We find a similar result for two-stage

stochastic program with recourse in [14].

Proposition 3 Suppose that Xψ is nonempty, f j(·), j ∈ q0, are twice continuously differentiable,

and that there exist constants 0 < m ≤ 1 ≤ M < ∞ such that

m‖x′ − x‖ ≤ 〈x′ − x,∇2f j(x)(x′ − x)〉 ≤ M‖x′ − x‖, (9)
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for all x, x′ ∈ IRn and j ∈ q0. Then, there exists a constant c < ∞ such that for any x ∈ Xψ,

θ(x)− c
√−θ(x)

m
≤ f0(x̂)− f0(x) ≤ θ(x)/M, (10)

where x̂ ∈ IRn is the optimal solution of P .

Proof: See Appendix.

In view of the above results, the optimality function offers a convenient way of measuring the

quality of a candidate point. Moreover, as we see in Section 5, the optimality function also provides

guidance towards the construction of an implementable algorithm for P .

The computation of θ(x) for a given x ∈ IRn requires the solution of a convex quadratic

program with linear constraints (see (8)), which can be achieved in finite time. However, the

definition of θ(x) involves f j(x) and ∇f j(x), j ∈ q0, that, in general, cannot be computed in finite

time. Consequently, we define an estimator for θ(x) using the sample average estimators for f j(x)

and ∇f j(x), j ∈ q0.

3 Estimator of Optimality Function

3.1 Definition and Consistency

Let ω1, ω2, ... be an infinite sequence of independent random vectors each with value in Ω and

distributed as P. Let IIN
4
= {1, 2, 3, ...}. We define for any N ∈ IIN, j ∈ q0, and x ∈ IRn, the

estimators for f j(x), ∇f j(x), ψ(x), and ψ(x)+ by

f j
N (x)

4
=

1
N

N∑

i=1

F (x, ωi), (11)

∇f j
N (x)

4
=

1
N

N∑

i=1

∇xF (x, ωi), (12)

ψN (x)
4
= maxj∈q f j

N (x), and ψN (x)+
4
= max{0, ψN (x)}, respectively. We refer to [11] for an overview

of alternative approaches to estimating ∇f j(x). In some situations it may be possible to use vari-

ance reduction techniques to define alternative estimators with smaller variance than those defined

above; see for example Section 5.5 in [34]. However, such estimators are beyond the scope of the

paper.

Finally, we define the estimator of θ(x) by

θN (x)
4
= min

h∈IRn

{
max

{
− ψN (x)+ + 〈∇f0

N (x), h〉, (13)

max
j∈q

{f j
N (x)− ψN (x)+ + 〈∇f j

N (x), h〉}
}

+ 1
2‖h‖2

}
.
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As commonly done, we view f j
N (x), j ∈ q0, ψN (x), ψN (x)+, and θN (x) as random variables and

∇f j
N (x), j ∈ q0, as random vectors defined on the product space generated by (Ω,F ,P) and denote

the resulting probability measure and sample space by P and Ω, respectively; see Chapter 7 of [34]

for further background. To emphasize the dependence on ω
4
= (ω1, ω2, ...) we occasionally write

f j
N (x, ω), ψN (x, ω), etc. Usually, however, we omit ω. We observe that under Assumption 1, for

all x ∈ X, F j(·, ω), j ∈ q0, are continuously differentiable at x for almost every ω ∈ Ω. Hence,

∇f j
N (x, ω), j ∈ q0, and θN (x, ω) are defined for almost every ω ∈ Ω.

Similar to (8), we deduce from Theorem 2.2.8 of [25] the following equivalent and useful

expression for θN (x):

θN (x) = − min
µ∈Σ0

q

{
µ0ψN (x)+ +

∑

j∈q

µj [ψN (x)+ − f j
N (x)] + 1

2

∥∥∥
∑

j∈q0

µj∇f j
N (x)

∥∥∥
2}

. (14)

We observe that since the objective function in (8) is a function of expectations, standard

results about the relationship between the optimal value of a problem and those of its sample

average approximations (see for example Chapter 5 in [34]) are not applicable. In the following,

however, we make use of similar proof techniques as in Chapter 5 of [34].

The next result proves that θN (x) is a strongly consistent estimator of θ(x). This result

is similar to classic results about almost sure convergence of optimal values of sample average

approximations to the optimal value of an original problem; see, e.g., [19, 26].

Theorem 1 Suppose that Assumption 1 holds on an open set containing x ∈ IRn. Then, θN (x) →
θ(x), as N →∞, almost surely.

Proof: It follows from Assumption 1 that for all j ∈ q, f j(x) is well defined and finite valued

and hence the strong law of large numbers implies that f j
N (x) → f j(x), as N →∞, almost surely.

Moreover, Theorem 7.52 in [34] gives that ∇f j
N (x) → ∇f j(x), as N →∞, almost surely. We define

for any µ ∈ Σ0
q the function η : Σ0

q → IR by

η(µ)
4
= µ0ψ(x)+ +

∑

j∈q

µj [ψ(x)+ − f j(x)] + 1
2

∥∥∥
∑

j∈q0

µj∇f j(x)
∥∥∥
2

(15)

and similarly we define the function ηN : Σ0
q → IR by

ηN (µ)
4
= µ0ψN (x)+ +

∑

j∈q

µj [ψN (x)+ − f j
N (x)] + 1

2

∥∥∥
∑

j∈q0

µj∇f j
N (x)

∥∥∥
2
. (16)

Since Σ0
q is compact, it follows that supµ∈Σ0

q
|ηN (µ)− η(µ)| → 0, as N →∞, almost surely. Hence,

for any ε > 0, there exists an N0 such that for all N ≥ N0 and µ ∈ Σ0
q , |ηN (µ)− η(µ)| ≤ ε, almost

surely. Since θ(x) = −minµ∈Σ0
q
η(µ) and θN (x) = −minµ∈Σ0

q
ηN (µ), it follows that |θN (x)−θ(x)| ≤

ε for all N ≥ N0 almost surely. This completes the proof.
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3.2 Asymptotic Distribution of Estimator

We next examine the asymptotic distribution of an appropriately shifted and scaled θN (x) for a

given x ∈ IRn. Before we state the main result of this section (Theorem 2), we need to establish

some notation.

Let for any x ∈ IRn,

Σ̂0
q(x)

4
=

{
µ ∈ Σ0

q

∣∣∣ θ(x) = µ0ψ(x)+ +
∑

j∈q

µj [ψ(x)+ − f j(x)] + 1
2

∥∥∥
∑

j∈q0

µj∇f j(x)
∥∥∥
2}

, (17)

q̂(x)
4
= {j ∈ q | ψ(x) = f j(x)}, and

q̂(x)+
4
=





q̂(x) ∪ {0} if ψ(x) = 0
q̂(x) if ψ(x) > 0
{0} otherwise.

(18)

We use v′ to denote the transpose of a vector v and define the following quantities:

f(x)
4
= (f1(x), f2(x), ..., f q(x))′, (19)

fN (x)
4
= (f1

N (x), f2
N (x), ..., f q

N (x))′, (20)

∇f(x)
4
= (∇f0(x)′,∇f1(x)′, ...,∇f q(x)′)′, (21)

and

∇fN (x)
4
= (∇f0

N (x)′,∇f1
N (x)′, ...,∇f q

N (x)′)′. (22)

We need the following light-tail assumption to ensure a central limit theorem.

Assumption 2 We assume that for a given x ∈ IRn, E[F j(x, ω)2] < ∞ for all j ∈ q and

E[(∂F j(x, ω)/∂xi)2] < ∞ for all j ∈ q0 and i = 1, 2, ..., n.

For any x ∈ IRn, we let Y (x) denote the q + (q + 1)n-dimensional normal random vector with

zero mean and variance-covariance matrix V (x), where V (x) is the variance-covariance matrix

of the random vector (F 1(x, ω), F 2(x, ω), ..., F q(x, ω),∇xF 0(x, ω)′,∇xF 1(x, ω)′, ...,∇xF q(x, ω)′)′.

Moreover, we define the q-dimensional random vector Y−1(x) and the n-dimensional random vectors

Yj(x), j ∈ q0, such that Y (x) = (Y−1(x)′, Y0(x)′, Y1(x)′, ..., Yq(x)′)′.

We use ⇒ to denote convergence in distribution. The following vector-valued central limit

theorem is well known; see, for example, Theorem 29.5 in [8].

Proposition 4 Suppose that Assumption 2 holds at x ∈ IRn and that Assumption 1 holds on an

open set containing x ∈ IRn. Then,

N1/2

((
fN (x)
∇fN (x)

)
−

(
f(x)
∇f(x)

))
⇒ Y (x) (23)

as N →∞.
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We next provide the asymptotic distribution of a scaled and shifted θN (x).

Theorem 2 Suppose that Assumption 2 holds at x ∈ IRn and that Assumption 1 is satisfied on an

open set containing x ∈ IRn. Then,

N1/2(θN (x)−θ(x)) ⇒ − min
µ∈Σ̂0

q(x)

{
µ0W (x)+

∑

j∈q

µj [W (x)−Y j
−1(x)]+

∑

j∈q0

µj
〈 ∑

k∈q0

µk∇fk(x), Yj(x)
〉}

(24)

as N →∞, where W (x)
4
= maxj∈q̂(x)+ Y j

−1(x), with Y 0−1(x)
4
= 0.

Proof: The proof is based on the Delta Theorem 7.59 in [34]. Let g : IRq+(q+1)n → IR be defined

for any ζ = (ζ−1, ζ
′
0, ζ

′
1, ..., ζ

′
q) ∈ IRq+(q+1)n, with ζ−1 ∈ IRq, ζj ∈ IRn, j ∈ q0, by

g(ζ)
4
= − min

µ∈Σ0
q

{
µ0w(ζ) +

∑

j∈q

µj [w(ζ)− ζj
−1] + 1

2

∥∥∥
∑

j∈q0

µjζj

∥∥∥
2}

, (25)

where w : IRq+(q+1)n → IR is defined by w(ζ)
4
= max{0, maxj∈q ζj

−1}. Since
∑

j∈q0
µj = 1 for all

µ ∈ Σ0
q , it follows that

g(ζ) = −w(ζ)− φ(ζ), (26)

where φ : IRq+(q+1)n → IR is defined by

φ(ζ)
4
= min

µ∈Σ0
q

{
−

∑

j∈q

µjζj
−1 + 1

2

∥∥∥
∑

j∈q0

µjζj

∥∥∥
2}

. (27)

Let

q̂w(ζ)
4
= {j ∈ q | max

k∈q
ζk
−1 = ζj

−1}, (28)

and

q̂w(ζ)+
4
=





q̂w(ζ) ∪ {0} if w(ζ) = 0
q̂w(ζ) if w(ζ) > 0
{0} otherwise.

(29)

Moreover, let

Σ̂φ(ζ)
4
=

{
µ ∈ Σ0

q

∣∣∣ φ(ζ) = −
∑

j∈q

µjζj
−1 + 1

2

∥∥∥
∑

j∈q0

µjζj

∥∥∥
2}

. (30)

It follows from Danskin Theorem; see, for example, Theorem 7.21 in [34], that w(·) and φ(·)
are locally Lipschitz continuous and directional differentiable with directional derivatives at ζ ∈
IRq+(q+1)n in the direction ξ ∈ IRq+(q+1)n given by

dw(ζ; ξ) = max
j∈q̂w(ζ)+

ξj
−1, (31)

with ξ0−1
4
= 0, and

dφ(ζ; ξ) = min
µ∈Σ̂φ(ζ)

{
−

∑

j∈q

µjξj
−1 +

∑

j∈q0

µj
〈 ∑

k∈q0

µkζk, ξj

〉}
. (32)
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Consequently, g(·) is locally Lipschitz continuous and directional differentiable with directional

derivatives at ζ ∈ IRq+(q+1)n in the direction ξ ∈ IRq+(q+1)n given by

dg(ζ; ξ) = − max
j∈q̂w(ζ)+

ξj
−1 − min

µ∈Σ̂φ(ζ)

{
−

∑

j∈q

µjξj
−1 +

∑

j∈q0

µj
〈 ∑

k∈q0

µkζk, ξj

〉}
. (33)

Hence, it follows from Proposition 7.57 in [34] that g(·) is Hadamard directional differentiable.

In view of Proposition 4, Delta Theorem 7.59 in [34] gives that

N1/2(g((fN (x),∇fN (x)′)′)− g((f(x),∇f(x)′)′)) ⇒ dg((f(x),∇f(x)′)′; Y (x)). (34)

The result now follows from the facts that g((fN (x),∇fN (x)′)′) = θN (x), g((f(x),∇f(x)′)′) = θ(x),

q̂w((f(x),∇f(x)′)′)+ = q̂(x)+, and Σ̂φ((f(x),∇f(x)′)′) = Σ̂0
q(x) and from rearranging terms.

In general, the right-hand side in (24) is not a normal random variable. Hence, θN (x) cannot

be expected to be approximately normal even for large N . In special cases, we find the following

interesting corollaries.

Corollary 1 Suppose that Assumption 2 holds at x ∈ IRn and that Assumption 1 is satisfied on

an open set containing x ∈ IRn. Then, the following statements hold:

(i) If the vectors ∇f j(x), j ∈ q0, are linearly independent, then Σ̂0
q(x) = {µ̂(x)} is a singleton and

N1/2(θN (x)− θ(x)) (35)

⇒ −µ̂0(x)W (x)−
∑

j∈q

µ̂j(x)[W (x)− Y j
−1(x)]−

∑

j∈q0

µ̂j(x)
〈 ∑

k∈q0

µ̂k∇fk(x), Yj(x)
〉
,

as N →∞.

(ii) If x is a local minimizer of P and the vectors ∇f j(x), j ∈ q̂(x), are linearly independent, then

Σ̂0
q(x) = {µ̂(x)} is a singleton and

N1/2θN (x) ⇒ −W (x) +
∑

j∈q̂(x)+

µ̂j(x)Y j
−1(x) (36)

as N →∞. Moreover, if in addition q̂(x) = {j(x)} is a singleton, then

N1/2θN (x) ⇒
{
−max{0, Y

j(x)
−1 }+ µ̂j(x)(x)Y j(x)

−1 (x) if f j(x)(x) = 0
0 if f j(x)(x) < 0

(37)

as N →∞.

Proof: If the vectors ∇f j(x), j ∈ q0, are linearly independent, then the matrix A(x) = (∇f0(x),

∇f1(x), ..., ∇f q(x)) has rank q+1. Hence, A(x)′A(x) is positive definite and the objective function

in (8) is strictly convex. Consequently, Σ̂0
q(x) is a singleton and part (i) follows directly.

Next, consider part (ii). Since x ∈ IRn is a local minimizer of P , ψ(x) ≤ 0 and, from

Proposition 2, θ(x) = 0. Hence, it follows from (8) that there exists a µ̂(x) ∈ Σ̂0
q(x) such that
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∑
j∈q0

µ̂j(x)∇f j(x) = 0 and
∑

j∈q µ̂j(x)[ψ(x)+ − f j(x)] = 0. Consequently, µ̂j(x) = 0 for all j ∈ q

such that j 6∈ q̂(x)+. We deduce from the Karush-Kuhn-Tucker conditions for P (see for example

Theorem 3.3.1 in [7]) that under the stated linear independence assumption, Σ̂0
q(x) is a singleton.

Since Y 0−1(x) = 0 by definition, (24) reduces to (36). Finally, (37) follows from (36).

Corollary 2 Suppose that Assumption 2 holds at x ∈ IRn and that Assumption 1 holds on an open

set containing x ∈ IRn. If all constraints are deterministic, i.e., F j(·, ω) = F j(x), j ∈ q, then

N1/2(θN (x)− θ(x)) ⇒ − min
µ∈Σ̂0

q(x)
µ0

〈 ∑

k∈q0

µk∇fk(x), Y0(x)
〉
, (38)

as N →∞.

Proof: This result follows by similar argument as those leading to Theorem 2.

We see from (38) that θN (x) is approximately normal when Σ̂0
q(x) is a singleton. Moreover,

the limiting distribution degenerates to the constant zero when θ(x) = 0.

The next corollary deals with the special case of no constraints.

Corollary 3 Suppose that Assumption 2 holds at x ∈ IRn and that Assumption 1 holds on an open

set containing x ∈ IRn. If there are no constraints in P , then

N1/2(θN (x)− θ(x)) ⇒ N (0,∇f0(x)′V0(x)∇f0(x)), (39)

as N → ∞, where V0(x) is the n-by-n variance-covariance matrix of Y0(x) (and ∇xF 0(x, ω)) and

N (0, σ2) denotes a zero-mean normal random variable with variance σ2.

Proof: This result follows from Theorem 2. It can also be shown using Delta Theorem 7.59 in [34]

and the fact (see p. 6 in [25]) that in this case we obtain the simplifications

θ(x) = −1
2‖∇f(x)‖2 (40)

and

θN (x) = −1
2‖∇fN (x)‖2. (41)

.

We next consider the bias EθN (x) − θ(x), where E denotes the expectation with respect to

P. Convergence in distribution do not necessarily imply convergence of expectations. Under an

uniform integrability property, however, the convergence of expectations is ensured; see for example

p. 338 of [8]. The property holds under several assumptions, one of which is used in the next result.

Proposition 5 Suppose that Assumption 2 holds at x ∈ IRn and that Assumption 1 holds on an

open set containing x ∈ IRn. Moreover, suppose that there exists an ε > 0 such that

sup
N∈IIN

E[|N1/2(θN (x)− θ(x))|1+ε] < ∞. (42)
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Then,

EθN (x)− θ(x) (43)

= N−1/2E
[
− min

µ∈Σ̂0
q(x)

{
µ0W (x) +

∑

j∈q

µj [W (x)− Y j
−1(x)] +

∑

j∈q0

µj
〈 ∑

k∈q0

µk∇fk(x), Yj(x)
〉}]

+ o(N−1/2).

Moreover, if Σ̂0
q(x) is a singleton, then

EθN (x)− θ(x) = −N−1/2E[W (x)] + o(N−1/2). (44)

Proof: From Theorem 25.12 in [8] and Theorem 2, we directly obtain (43). Since Y j
−1, j ∈ q, and

Yj(x), j ∈ q0, have zero mean and
∑

j∈q0
µj = 1 for all µ ∈ Σ0

q , (44) also holds.

Conditions that ensure that Σ̂0
q(x) is a singleton is given in Corollary 1.

We observe that the bias identified above is similar to the well-known bias of the optimal value

of minx∈Xψ
f0

N (x) relative to the optimal value of minx∈Xψ
f0(x); see, for example p. 167 in [34].

In that case, the bias is always nonpositive. In the present case, EθN (x) may be larger than θ(x).

However, in the absence of constraints in P , it follows directly from (40) and (41) and Jensen’s

inequality that for any N ∈ IIN,

EθN (x) ≤ θ(x). (45)

4 Validation Analysis

In this section, we develop procedures for assessing the quality of a candidate point x ∈ IRn.

Specifically, we develop confidence intervals and probabilistic bounds on θ(x) and ψ(x). Using such

bounds, we may claim with some confidence that x satisfies the conditions ψ(x) ≤ δ and θ(x) ≥ −ε

for a given δ ≥ 0 and ε > 0. We first consider the situation with no constraints in P , second deal

with near feasibility, and third bound the optimality function of the full problem.

4.1 Unconstrained Optimization

Suppose that there are no constraints in P and let x ∈ IRn be a candidate solution. In view of

Corollary 3, θN (x) is approximately normal with mean θ(x) and variance ∇f(x)′V0(x)∇f(x)/N for

large N . Hence, it is straightforward to construct a confidence interval for θ(x). Let

V0,N (x)
4
=

1
N − 1

N∑

i=1

(∇xF (x, ωi)− fN (x))′(∇xF (x, ωi)− fN (x)). (46)

be the standard unbiased estimator of V0. Then for large N ,

(
θN (x)− zα

√
∇fN (x)′V0,N (x)∇fN (x)/N, 0

]
(47)
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is an approximate 100(1 − α)%-confidence interval for θ(x), where zα is the standard normal α-

quantile. In (47) and other confidence intervals below we use a quantile of the standard normal

distribution instead of one of the t-distribution as the sample size is typically relatively large.

We observe that the approximate normality of θN (x) does not directly reflect the fact that

θN (x) ≤ 0 almost surely. However, in practice, validation analysis is almost always carried out at

an x ∈ IRn with θ(x) < 0 in which case the truncation at zero is insignificant for large N . Our

numerical experiments indicate that the normal model of θN (x) is quite accurate for both θ(x) < 0

and θ(x) = 0; see Section 6. The confidence interval (47) is one-sized, as are the confidence intervals

derived below. While it is easy to convert (47) into a two-sided confidence interval, we believe that

one-sided confidence intervals are more suitable in the present context as θ(x) ≥ −ε is a natural

(though conceptual) criterion for stopping an algorithm applied to P . Hence, if (47) is contained

in (−ε, 0], then we would be 100(1− α)% confident that θ(x) ≥ −ε is satisfied.

4.2 Near Feasibility in P

We next consider the full problem P and develop a procedure for determining whether x ∈ IRn is

nearly feasible, i.e., ψ(x) ≤ δ for some δ ≥ 0. We adopt a simple batching approach to estimate the

value of ψ(x). In the ranking and selection literature we find more sophisticated and potentially

more efficient ways of determining whether x is nearly feasible; see for example [18] and references

therein. It is also possible to estimate f j(x) independently for each constraints j ∈ q; see [30].

However, we do not explore those possibilities further.

Since the function m : IRq → IR defined for any y ∈ IRq by m(y)
4
= maxj∈q yj is convex, it

follows by Jensen’s inequality that

ψ(x) ≤ EψN (x). (48)

We construct a confidence interval for EψN (x), which, in view of (48), provides a conservative

confidence interval for ψ(x).

For given N and M , let ψN,k(x), k = 1, 2, ..., M , be independent random variables distributed

as ψN (x). Then,

ψN,M (x)
4
=

1
M

M∑

k=1

ψN,k(x) (49)

is an unbiased estimator of EψN (x). If E[F j(x, ω)2] < ∞ for all j ∈ q, then a central limit

theorem holds for ψN,M (x), i.e., ψN,M (x) is approximately normal with mean EψN (x) and variance

V ar[ψN (x)]/M for large M . Let s2
ψ,N,M (x) be the standard unbiased estimator of V ar[ψN (x)] given

by

s2
ψ,N,M (x) =

1
M − 1

M∑

k=1

(ψN,k(x)− ψN,M (x))2. (50)

Then, it follows that

(−∞, ψN,M (x) + zαsψ,N,M (x)/
√

M) (51)
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is an approximate 100(1 − α)%-confidence interval for EψN (x) for large M . In view of (48), it

follows that (51) is a conservative 100(1 − α)%-confidence interval for ψ(x) for large M . This

confidence interval can be used to assess whether the candidate solution x satisfies ψ(x) ≤ δ.

4.3 Constrained Optimization

We propose two approaches for obtaining confidence intervals for θ(x). The first approach makes

use of the following result.

Proposition 6 Consider x ∈ IRn and suppose that Assumption 1 holds on an open set containing

x ∈ IRn. Then, for any µ ∈ Σ0
q,

θ(x) ≥ E
[
− µ0ψN (x)+ −

∑

j∈q

µj(ψN (x)+ + f j
N (x))− 1

2

∥∥∥
∑

j∈q0

µj∇f j
N (x)

∥∥∥
2]

. (52)

Proof: For any µ ∈ Σ0
q , let η̃ : IRq+(q+1)n → IR be defined by

η̃(ζ)
4
= max{0, max

j∈q
ζj
−1} −

∑

j∈q

µjζj
−1 + 1

2

∥∥∥
∑

j∈q0

µjζj

∥∥∥
2

(53)

for any ζ = (ζ ′−1, ζ
′
0, ζ

′
1, ...ζ

′
q) ∈ IRq+(q+1)n, with ζ−1 ∈ IRq and ζj ∈ IRn, j ∈ q0. Since η̃(·) is convex,

it follows from Jensen’s inequality that

Eη̃((fN (x)′,∇fN (x)′)′) ≥ η̃((f(x)′,∇f(x)′)′). (54)

From (8) and (54), we see that

η̃((f(x)′,∇f(x)′)′) = µ0ψ(x)+ +
∑

j∈q

µj(ψ(x)+ + f j(x)) + 1
2

∥∥∥
∑

j∈q0

µj∇f j(x)
∥∥∥
2

(55)

≥ −θ(x). (56)

The result then follows from the fact that Eη̃((fN (x)′,∇fN (x)′)′) equals the negative of the right-

hand side in (52).

In view of Proposition 6, we construct a conservative confidence interval for θ(x) by com-

puting a confidence interval for the right-hand side in (52). We adopt a batching approach and,

for given N and M , let ηN,k, k = 1, 2, ..., M , be independent random variables distributed as

η̃((fN (x)′,∇fN (x)′)′). Then,

ηN,M
4
=

1
M

M∑

k=1

ηN,k (57)

is an unbiased estimator of E[η̃((fN (x)′,∇fN (x)′)′)]. Under sufficient integrability assumptions for

(fN (x)′,∇fN (x)′), a central limit theorem holds for ηN,M and, consequently, ηN,M is approximately

normal with mean E[η̃((fN (x)′,∇fN (x)′)′)] and variance V ar[η̃((fN (x)′,∇fN (x)′)′)]/M for large

M . Let s2
η,N,M be the standard unbiased estimator of V ar[η̃((fN (x)′,∇fN (x)′)′)] given by

s2
η,N,M =

1
M − 1

M∑

k=1

(ηN,k − ηN,M )2. (58)
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Then, it follows that

(−ηN,M − zαsη,N,M (x)/
√

M, 0] (59)

is an approximate 100(1 − α)%-confidence interval for E[−η̃((fN (x)′,∇fN (x)′)′)] for large M . In

view of (52), it follows that (59) is a conservative 100(1−α)%-confidence interval for θ(x) for large

M . To compute the above confidence interval, it is necessary to select a µ ∈ Σ0
q . In view of the

proof of Proposition 6, we see that a tighter confidence interval can be expected when µ ∈ Σ̂0
q(x).

Hence, we recommend to select µ as the optimal solution of (14) for some large N . We note,

however, that even when using µ ∈ Σ̂0
q(x), the inequality in (52) may be strict.

The second approach to constructing a confidence interval for θ(x) is motivated by a procedure

for obtaining bounds on the optimal value of optimization problems with chance constraints; see

Section 5.7.2 in [34]. The approach is somewhat more limited than the first approach as it requires

the following independence assumption.

Assumption 3 We assume that for a given x ∈ IRn, the random vectors (f j(x),∇f j(x)′)′, j ∈ q,

are statistically independent. Moreover, we assume that ∇f0(x) is statistically independent of

(f j(x),∇f j(x)′)′ for all j ∈ q.

Assumption 3 trivially holds for all x ∈ IRn in the important special case when all but one of the

random functions F j(·, ω), j ∈ q0, are deterministic.

It is beneficial to “decompose” the optimality function into feasibility and optimality parts.

From (7) we see that θ(x) = −ψ(x)+ + u(x), where

u(x)
4
= min

h∈IRn,z∈IR
z + 1

2‖h‖2 (60)

s.t. 〈∇f0(x), h〉 ≤ z

f j(x) + 〈∇f j(x), h〉 ≤ z, j ∈ q.

Here, −ψ(x)+ is a measure of feasibility and u(x) is a measure of optimality. Similarly, let

uN (x)
4
= min

h∈IRn,z∈IR
z + 1

2‖h‖2 (61)

s.t. 〈∇f0
N (x), h〉 ≤ z

f j
N (x) + 〈∇f j

N (x), h〉 ≤ z, j ∈ q.

The next lemma provides a useful relationship between u(x) and uN (x).

Lemma 1 Suppose that Assumptions 2 and 3 hold at x ∈ IRn and that Assumption 1 holds on an

open set containing x ∈ IRn. Then,

lim inf
N→∞

P[uN (x) ≤ u(x)] ≥ 1
2q+1

. (62)
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Proof: Suppose that (ĥ, ẑ) ∈ IRn+1 is a feasible point in (60). We want to determine the probability,

denoted p̂N , that (ĥ, ẑ) is feasible in (61). Since (ĥ, ẑ) ∈ IRn+1 is feasible for (60), we obtain that

p̂N
4
= P

[{
〈∇f0

N (x), ĥ〉 ≤ ẑ
} ⋂ ( ⋂

j∈q

{
f j

N (x) + 〈∇f j
N (x), ĥ〉 ≤ ẑ

})]

≥ P
[{
〈∇f0

N (x)−∇f0(x), ĥ〉 ≤ 0
} ⋂

(63)
( ⋂

j∈q

{
f j

N (x)− f j(x) + 〈∇f j
N (x)−∇f j(x), ĥ〉 ≤ 0

})]
.

Under Assumption 3, it follows that

p̂N ≥ P
[
〈∇f0

N (x)−∇f0(x), ĥ〉 ≤ 0
] ∏

j∈q

P
[
f j

N (x)− f j(x) + 〈∇f j
N (x)−∇f j(x), ĥ〉 ≤ 0

]
. (64)

In view of Proposition 4, it follows that N1/2〈∇f0
N (x) −∇f0(x), ĥ〉 converges in distribution to a

zero-mean normal random variable. Hence,

lim
N→∞

P
[
〈∇f0

N (x)−∇f0(x), ĥ〉 ≤ 0
]
≥ 1/2. (65)

We observe that the limit in (65) is not equal to 1/2 as the zero-mean normal random variable may

have zero variance. Similarly, for all j ∈ q, N1/2(f j
N (x)− f j(x) + 〈∇f j

N (x)−∇f j(x), ĥ〉) converges

in distribution to a zero-mean normal random variable. Hence, for all j ∈ q,

lim
N→∞

P
[
f j

N (x)− f j(x) + 〈∇f j
N (x)−∇f j(x), ĥ〉 ≤ 0

]
≥ 1/2. (66)

Consequently, lim infN→∞ p̂N ≥ 1/2q+1. Since this result holds for any (ĥ, ẑ) ∈ IRn+1 that is

feasible in (60), it also holds for the optimal solution in (60). If (ĥ, ẑ) ∈ IRn+1 is the optimal

solution in (60) and it is also feasible in (61), then

uN (x) ≤ ẑ + 1
2‖ĥ‖2 = u(x). (67)

This completes the proof.

Lemma 1 provides the basis for the following procedure for obtaining a probabilistic lower

bound on u(x). This procedure is essentially identical to the one proposed in Section 5.7.2 of [34]

in the context of chance constraints.

Let uN,k(x), k = 1, 2, ..., K, be independent random variables distributed as uN (x). After

obtaining realizations of these random variables, we order them with respect to their values. Let

ũN,1, ũN,2, ..., ũN,K , with ũN,k ≤ ũN,k+1, be this ordered sequence. That is, ũN,1 is the smallest

value of uN,k(x), k = 1, 2, ..., K, ũN,2 is the second smallest, etc. Suppose that γ̂N is a lower bound

on P[uN (x) ≤ u(x)] and suppose that for a given β ∈ (0, 1), K and L satisfy

L−1∑

k=0

(
K
k

)
γ̂k

N (1− γ̂N )K−k ≤ β. (68)
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Then, using the same arguments as in 5.7.2 of [34], we obtain that

P[ũN,L > u(x)] ≤ β. (69)

Hence, (ũN,L, 0] is a 100(1 − β)%-confidence interval for u(x). In view of Lemma 1 and its proof,

we recommend a number slightly smaller than 1/2q+1 as an estimate of the lower bound γ̂N when

N is moderately large.

Suppose that the confidence interval for ψ(x) in (51) is computed independently of the confi-

dence interval for u(x). Then,

(
−max{0, ψN,M (x) + zαsψ,N,M (x)/

√
M}+ ũN,L, 0

]
(70)

is an approximate 100(1− α)(1− β)%-confidence interval for θ(x) for large M and N . We observe

that the first approach to computing a confidence interval for θ(x) requires the solution of only one

convex quadratic optimization problem to obtain µ ∈ Σ0
q . The second approach requires K such

solutions. If L = 1, then K ≥ log β/ log(1− γ̂N ). Hence, K is typically moderate. For example, if

β = 0.01 and γ̂N = 0.49, then K = 7 suffices.

5 Algorithm and Consistent Approximations

There are numerous algorithms for solving stochastic programs similar to P including decomposi-

tion algorithms in cases with special structure (see, e.g., [16, 13]), stochastic approximations (see,

e.g., [10, 6, 20, 23]), other versions of stochastic search (see, e.g., [36]), and sample average ap-

proximations (see, e.g., [34]). A detail review of these algorithms is beyond the scope the paper.

However, we note that special structure may not be present and stochastic approximations may be

problematic to apply to P as that problem possibly involves constraints given by nonconvex expect

value functions. In this section, we use sample average approximations, the optimality function

θ(·), and θN (x) to construct an algorithm for P that converges almost surely under a smoothness

assumption.

5.1 Consistent Approximations

We adopt the framework of sample average approximation and define the sample average problem

PN : min
x∈IRn

{f0
N (x) | f j

N (x) ≤ 0, j ∈ q}. (71)

It is well-known that under suitable assumptions, the optimal value and the set of optimal solutions

of PN converges in some sense to the optimal value and the set of optimal solutions of P , respec-

tively; see for example Chapter 5 of [34]. While such results provide guidance to the selection of N ,

they do not directly translate into an implementable algorithm for solving P . In particular, if PN

is nonconvex, then a globally optimal solution of PN may be beyond reach. In this section, we show
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that PN and an associated optimality function are weakly consistent approximations (see Section

3.3 in [25] and description below) of P and θ(·). This result directly leads to an implementable

algorithm for P . Note that the concept of consistent approximations in [25] is not directly related

to consistency of estimators.

We need the following strengthening of Assumption 1.

Assumption 4 We assume that for a given set S ⊂ IRn, the following hold for all j ∈ q0:

(i) For almost all ω ∈ Ω, F j(·, ω) is continuously differentiable on S.

(ii) There exists nonnegative valued measurable function such that E[C(ω)] < ∞ and for every

x ∈ S, |F j(x, ω)| ≤ C(ω) and ‖∇xF j(x, ω)‖ ≤ C(ω) for almost all ω ∈ Ω.

Assumption 4 is identical to those made in [2] and holds for example in the context of estimation

of mixed logit models. Important models such as two-stage stochastic programs with recourse

and conditional Value-at-Risk problems involve nonsmooth functions F j(·, ω) (see for example [17]

and [27]) and hence do not satisfy Assumption 4 (i). However, recent efforts to apply smooth

approximations of F j(·, ω) appear promising [1, 39] and facilitate the use of the algorithm below

also in these nonsmooth cases.

If Assumption 4 holds on an open set S, then it follows from Theorems 7.44 and 7.48 in [34]

that f j(·), j ∈ q0, are continuously differentiable on S and that

∇f j(x) = E[∇xF j(x, ω)], (72)

for all x ∈ S and j ∈ q0. Moreover, f j
N (·, ω), j ∈ q0, are continuously differentiable for almost every

ω ∈ Ω. Hence, PN is a smooth optimization problem almost surely. Consequently, the estimator

θN (x) of θ(x) can be viewed as an optimality function θN : IRn → (∞, 0] for PN . It follows trivially

that Proposition 2 holds with ψ(x̂) and θ(x̂) replaced by ψN (x̂) and θN (x̂), respectively, and f j(x̂)

and ∇f j(x̂), j ∈ q0, replaced by f j
N (x̂) and ∇f j

N (x̂), j ∈ q0, respectively, in (5) and (6). Similarly,

Proposition 3 holds under suitable assumptions with θ(x), f(x), and f(x̂) replaced by θN (x), fN (x),

and fN (x̂N ), where x̂N is the optimal solution of PN . Hence, θN (x) can be viewed as a measure of

the distance between x and a Fritz-John point of PN .

We adopt the definition of weakly consistent approximations from Section 3.3 in [25]: The

elements of the sequence {(PN , θN (·)}∞N=1 are weakly consistent approximations of (P, θ(·)) if (i)

PN →epi P , as N →∞, almost surely, and (ii) for any x ∈ IRn and sequence {xN}∞N=1 ⊂ IRn with

xN → x, as N →∞, lim supN→∞ θN (xN ) ≤ θ(x), almost surely.

We proceed by showing that {(PN , θN (·)}∞N=1 indeed are weakly consistent approximations

of (P, θ(·)). We first consider epiconvergence of PN to P , which requires the following constraint

qualification.
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Assumption 5 We assume for a given set S ⊂ IRn and for almost every ω ∈ Ω that the following

holds: For every x ∈ S satisfying ψ(x) ≤ 0, there exists a sequence {xN}∞N=1 ⊂ S, with ψN (xN , ω) ≤
0, such that xN → x, as N →∞.

When Assumptions 4 holds on a compact set S, then for all j ∈ q0, f j
N (x) converges to

f j(x) uniformly on S almost surely; see for example Theorem 7.48 in [34]. It is well-known that

epiconvergence follows under the stated assumptions. This result is given in the next proposition;

see for example Theorem 3.3.2 in [25] for a proof.

Proposition 7 Suppose that Assumptions 4 and 5 hold on an open and bounded set S ⊂ IRn and

Xψ ⊂ S. Then, PN →epi P , as N →∞, almost surely.

We next consider the requirement on the relationship between θN (·) and θ(·), as N → ∞.

When Assumptions 4 holds on a compact set S, then for all j ∈ q0, ∇f j
N (x) converges to ∇f j(x)

uniformly on S almost surely; see for example Theorem 7.48 in [34]. Hence, the next extension of

Theorem 1 follows by essentially the same arguments as in that theorem’s proof.

Proposition 8 Suppose that Assumption 4 holds on an open set S ⊂ IRn and that X ⊂ S is

compact. Then, θN (x) → θ(x), as N →∞, uniformly on X, almost surely.

In view of Propositions 7 and 8, the next result follows directly from the definition of consistent

approximations.

Theorem 3 Suppose that Assumptions 4 and 5 hold on an open set S ⊂ IRn, that X ⊂ S is com-

pact, and that Xψ ⊂ X. Then, {(PN , θN (·)}∞N=1 are weakly consistent approximations of (P, θ(·)).

As we see in the next section, this result directly leads to an implementable algorithm for P .

5.2 Algorithm

We adapt Algorithm Model 3.3.14 in [25] to P . In essence, the resulting algorithm approximately

solves the sequence of problems {PN}N∈K, where K is an order set of strictly increasing positive

integers with infinite cardinality. As N increases, the precision with which PN is solved increases

too. We measure the precision of a solution of PN by means of the optimality function θN (·). When

a point of sufficient precision is obtained for PN , then the algorithm starts solving PN ′ , where N ′ is

the next integer in K after N . We allow great flexibility in the choice of optimization algorithm for

approximately solving {PN}N∈K. Essentially, all convergent nonlinear programming solvers can be

used.

For almost every ω = (ω1, ω2, ...) ∈ Ω and any N ∈ IIN, let AN : IRn → 2IRn
be a deterministic

algorithm map that defines one iteration of a nonlinear programming algorithm as applied to

19



PN with the sample ω1, ω2, ..., ωN . We assume that the algorithm map satisfies the following

assumption.

Assumption 6 For almost every ω = (ω1, ω2, ...) ∈ Ω and any N ∈ IIN, we assume that every

accumulation point x̂ ∈ IRn of a sequence {xi}∞i=0 generated by the algorithm map AN (·), i.e.,

xi+1 ∈ AN (xi), satisfies θN (x̂) = 0 and ψN (x̂) ≤ 0.

We next state the algorithm, where we use the notation k(N) to denote the smallest N ′ ∈ K
strictly greater than N .

Algorithm 1 (Solves P )

Input. Function ∆ : IIN → (0,∞) such that ∆(N) → 0, as N → ∞; an ordered set K of strictly

increasing positive integers with infinite cardinality; parameters ε, δ > 0; N0 ∈ K; x0 ∈ IRn;

and realizations ω1, ω2, ... obtained by independent sampling from P.

Step 0. Set i = 0, x∗0 = x0, and N = N0.

Step 1. Using ω1, ω2, ..., ωN , compute xi+1 ∈ AN (xi).

Step 2. If θN (xi+1) ≥ −ε∆(N) and ψN (xi+1) ≤ δ∆(N), then set x∗N = xi+1 and replace N by

k(N).

Step 3. Replace i by i + 1, and go to Step 1.

In Algorithm 1, PN and PN ′ are not independent for any N, N ′ ∈ K as the sample is augmented and

not regenerated. We note that the infinite sequence of realizations ω1, ω2, ... can be generated as

needed. That is, initially, generate ω1, ω2, ..., ωN0 , and then augment the sequence as N is increased.

The following convergence result for Algorithm 1 follows directly from Theorem 3.3.15 in [25].

Proposition 9 Suppose that Assumptions 4, 5, and 6 hold on a sufficiently large open subset of

IRn. Moreover, suppose that Algorithm 1 has generated the sequences {x∗N} and {xi}∞i=0 and they

are bounded. Then, every accumulation point x̂ of {x∗N} satisfies θ(x̂) = 0 and ψ(x̂) ≤ 0 almost

surely.

Algorithm 1 does not include a stopping criterion. One might run Algorithm 1 until a prede-

termined computing budget is exhausted and then carry out validation analysis on the candidate

points {xi} or a subset thereof. For example, validation analysis may include computing confidence

intervals for ψ(xi) and θ(xi) using (51), (59), and/or (70). The confidence intervals need to be

computed using a sample that is independent of the one used in Algorithm 1 to ensure the stated

approximate coverage probabilities.

In practice, one might also want to carry out sequential validation analysis. That is, whenever

a new x∗N or xi is generated, immediately assess its quality. If the quality is satisfactory, then
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Confidence intervals
N θ(x̂) θ(x1) θ(x2) θ(x3)
105 (−0.2897, 0] (−0.6515, 0] (−62.09, 0] (−5774, 0]
106 (−0.0427, 0] (−0.5771, 0] (−57.98, 0] (−5747, 0]
107 (−0.0043, 0] (−0.4617, 0] (−57.55, 0] (−5743, 0]
∞ 0 −0.4420 −57.40 −5740

Table 1: Example 1: 95%-confidence intervals for θ(x̂) (column 2), θ(x1) (column 3), θ(x2) (column
4), and θ(x3) (column 5) using (47) with varying sample size N . The last row gives the true values
of θ(x̂), θ(x1), θ(x2), and θ(x3).

stop the algorithm. Otherwise, let the algorithm continue. In this case, the last candidate solution

generated by the algorithm is random. Hence, the confidence intervals derived in this paper may

not have the stated approximate coverage probabilities when applied to that last solution; see [5]

for a similar situation in the context of optimality gap estimation.

6 Numerical Examples

In this section, we present preliminary numerical tests of Algorithm 1 and the validation analysis

procedures developed in Section 4 as applied to four simple examples. We recognize that variance

reduction techniques (see for example Section 5.5 in [34]) may reduce computing times in validation

analysis and optimization, but do not pursue that avenue in this paper. All calculations in this

section are performed in Matlab 7.4 on a 2.16 GHz laptop computer with 1 GB of RAM and

Windows XP.

6.1 Example 1: Validation Analysis for Unconstrained Problem

We consider an instance of P where there are no constraint, n = 20, and F 0(·, ·) is defined by

F 0(x, ω) =
20∑

i=1

ai(xi − biωi)2 (73)

where ai = i, bi = 21 − i, i = 1, 2, ..., 20, and ω = (ω1, ω2, ..., ω20)′ is a vector of independent

and uniformly [0, 1] distributed random variables. In this instance, both ∇f0(x) and the unique

global minimizer x̂ = (10, 9.5, 9, 8.5, ..., 0.5)′ are easy to compute explicitly. However, we still use

the validation analysis of Section 4.1 and compare the resulting confidence interval of θ(x) with the

true value of θ(x). We observe that Assumption 1 (and 4) holds for this problem instance.

We consider four candidate points: the optimal solution x̂, a near-optimal point x1 = (10.0029,

9.4866, 9.0071, 8.5162, 7.9931, 7.5086, 7.0125, 6.4841, 5.9856, 5.5057, 4.9960, 4.5069, 4.0082, 3.5071,

3.0129, 2.5067, 2.0119, 1.4880, 0.9998, 0.4984)′ obtained by randomly perturbing x̂, a further-away

point x2 = (9.9, 9.4, 8.9, ..., 0.4)′, and a relatively far-away point x3 = (9, 8.5, 8, ...,−0.5)′.
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Table 1 gives 95%-confidence intervals for θ(x̂) (column 2), θ(x1) (column 3), θ(x2) (column

4), and θ(x3) (column 5) using (47) with varying sample size N . The last row gives the true values

of θ(x̂), θ(x1), θ(x2), and θ(x3). We observe that the confidence intervals cover the true value of the

optimality function. When the value of the optimality function is some distance from zero, a tight

confidence interval is obtained using a moderate sample size N . However, when the optimality

function is close to zero, tightness can only be obtain by using a large sample size.

We also apply a hypothesis test based on a Chi-square statistic proposed in [35]. The test

involves the null hypothesis that the current point satisfies the KKT conditions and the alternative

hypothesis that they are not. For x̂, we compute a p-value of 0.20 using a sample size of N = 105.

Hence, with a test size of (for example) 0.05, we are unable to reject the null hypothesis. For

x1, x2, and x3, we compute p-values of essentially zero. Hence, in those cases we reject the null

hypothesis with high confidence. While these conclusions are reasonable, they do not directly

provide information about how “close” a candidate solution is to a Fritz-John point. In practice,

we are rarely able to obtain a candidate solution that is a Fritz-John point. Hence, the “distance”

to such a point becomes important. While [35] provides expressions for a confidence region for

∇f0(x) that can be computed and compared with a user-defined region containing 0 ∈ IRn, it

is more natural and convenient to condense ∇f0(x) into a single number as achieved with the

optimality function. As we see next (and in Section 4), the approach based on the optimality

function also generalizes to constrained problems under mild assumptions.

6.2 Example 2: Validation Analysis for Deterministically Constrained Problem

The next problem instance generalizes a classical problem arising in search and detection applica-

tions. Consider an area of interest divided into n cells. A stationary target is located in one of the

cells. A priori information gives that the probability that the target is in cell i is pi, i = 1, 2, ..., n,

with
∑n

i=1 pi = 1. The goal is to optimally allocate T time units of search effort such that the prob-

ability of not detecting the target is minimized (see, e.g., p. 5-1 in [38]). We generalize this problem

and consider a random search effectiveness in cell i per time unit and minimize the expected prob-

ability of not detecting the target. We let x ∈ IRn, with xi representing the number of time units

allocated to cell i, and let ω = (ω1, ω2, ..., ωn)′ be independent lognormally distributed random

variables (with parameters ξi = 100ui and λi = 0, where ui ∈ (0, 1) are given data generated by

independent sampling from a uniform distribution) representing the random search effectiveness in

cell i. Then, the expected probability of not detecting the target is f0(x) = E[F 0(x, ω)], where

F 0(x, ω) =
∑n

i=1 pi exp(−ωixi). The decision variables are constrained by
∑n

i=1 xi ≤ T and x ≥ 0,

where we use T = 1. We consider n = 100 cells. Assumption 1 (and 4) holds for this problem

instance.

We consider three candidate solutions: x1 ∈ IR100, which is nearly optimal, x2 = (1/100, 1/100,

..., 1/100)′∈ IR100, and x3 = (1/50, 1/50, ..., 1/50)′ ∈ IR100, which is infeasible. We verify using long
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Confidence Intervals
Method N M K θ(x1) θ(x2) θ(x3)

103 30 - (−0.000630, 0] (−0.007837, 0] (−1.048609, 0]
(59) 104 30 - (−0.000050, 0] (−0.007783, 0] (−1.048554, 0]

105 100 - (−0.000006, 0] (−0.007483, 0] (−1.009602, 0]
103 - 5 (−0.000464, 0] (−0.007497, 0] (−0.993391, 0]

(70) 104 - 5 (−0.000049, 0] (−0.007359, 0] (−0.993278, 0]
105 - 5 (−0.000006, 0] (−0.007365, 0] (−0.993201, 0]

“Exact” ≈ 8 · 10−7 ≈ −0.00736 ≈ −0.99318

Table 2: Example 2: 95%-confidence intervals for θ(x1) (column 3), θ(x2) (column 4), and θ(x3)
(column 5) using (59) (rows 3-5) and (70) (rows 6-8) with varying sample size N and replications
M and K. The last row gives approximate values of θ(x1) (column 3), θ(x2) (column 4), and θ(x3)
(column 5).

simulations (N = 108) that θ(x1) ≈ 8 · 10−7, θ(x2) ≈ −0.00736, and θ(x3) ≈ −0.99318; see the last

row of Table 2.

We consider both confidence interval (59) and (70). To compute (59), we first estimate µ by

solving (14) using sample size N . Second, we compute ηN,M using that µ and M replications. In

(70), we use L = 1 which leads to K = 5 when β = 0.05; see (68).

Table 2 provides 95%-confidence intervals for θ(x1), θ(x2), and θ(x3) using (59) (rows 3-5) and

(70) (rows 6-8) with varying sample size N and replications M and K. It appears that (59) tends

to give slightly larger confidence intervals compared to (70) and that the computational effort is

also greater. However, the use of (70) requires Assumption 3.

We confirm the confidence level stipulated by the confidence interval (70) by estimating cov-

erage probabilities, i.e., the probability that the random confidence interval (70) includes θ(x). We

find that 99%, 98% and 99% of 1000 (200 in the case of N = 105) independent replications of

(70) cover θ(x1) for N = 103, N = 104, and N = 105, respectively. Similar calculations for θ(x2)

and θ(x3) result in coverage percentages of at least 97%. All these percentages are well above the

stipulated 95%.

We also apply the hypothesis test of [35] and find a p-value of 0.65 for the case with x1. Hence,

we are unable to reject the null hypothesis that x1 is a KKT point using any reasonable test size.

In the case of x2 and x3, the p-values are essentially zero and the null hypothesis is rejected even

with a small test size. As discussed in Section 6.1, we believe that results of the kind presented in

Table 2 are more informative than such hypothesis tests.

6.3 Example 3: Validation Analysis for Problem with Expectation Constraint

We next consider an engineering design problem where the cost of a short structural column needs

to be minimized subject to constraints on the failure probability and the aspect ratio; see [28].

The design variables are the width x1 and depth x2 of the column. In [29], we find that the failure
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Confidence Intervals
Method N M K θ(x1) θ(x2) θ(x3)

103 30 - (−0.0554, 0] (−0.7856, 0] (−10.0301, 0]
(59) 104 30 - (−0.0074, 0] (−0.8179, 0] (−10.1692, 0]

105 100 - (−0.0014, 0] (−0.7816, 0] (−9.8631, 0]
103 30 5 (−0.0595, 0] (−0.8129, 0] (−10.6630, 0]

(70) 104 30 5 (−0.0031, 0] (−0.8229, 0] (−10.1777, 0]
105 30 5 (−0.0003, 0] (−0.8137, 0] (−10.3143, 0]

Table 3: Example 3: 90%-confidence intervals for θ(x1), θ(x2), and θ(x3) using (59) (rows 3-5) and
(70) (rows 6-8) with varying sample size N and replications M and K.

probability for design x = (x1, x2) can be approximated with high-precision by the expression E[1−
χ2

4(r
2(x, ω))], where ω is a four-dimensional standard normal random vector modeling random loads

and material property, χ2
4(·) is the cumulative distribution function of a Chi-squared distributed

random variable with four degrees of freedom, and r(x, ω) is the minimum distance from 0 ∈ IR4

to a limit-state surface describing the performance of the column given design x and realization

ω; see [28, 29]. The failure probability is constrained to be no greater than 0.00135. Hence,

we set f1(x) = E[1 − χ2
4(r

2(x, ω))]/0.00135 − 1. As in [28], we adopt the objective function

f0(x) = x1x2 and the additional constraints f2(x) = −x1, f3(x) = −x1, f4(x) = x1/x2 − 2, and

f5(x) = 0.5− x2/x1. In view of results in [29], Assumption 1 holds for this problem instance.

We consider three candidate designs: x1 = (0.334, 0.586)′ is the best point reported in [28];

x2 = (0.346, 0.553)′ is an infeasible solution reported in [28], and x3 = (0.586, 0.334)′ is the “mirror

image” of x1. Table 3 presents similar confidence intervals as in Table 2, but with α = 0.1 in

(59) and α = β = 0.05 in (70). The methods give comparable results. As observed earlier, a near

optimal solution may require a relatively large sample size to ensure a tight confidence interval.

6.4 Example 4: Optimization and Validation Analysis for Full Problem

We next illustrate Algorithm 1 by considering an extension of Example 1. Let F 0(·, ·) be as defined

in that example (see (73)) and also define F 1(·, ·) and F 2(·, ·) similarly, but with ai and bi being

randomly and independently generated from a uniform distribution supported on [0, 10] and [0, 2],

respectively. Moreover, we subtract 100 from these expression to construct constraints of the form

E[
∑20

i=1 ai(xi − biωi)2 − 100] ≤ 0. Hence, the resulting instance of P involves 20 decision variables,

60 independent random variables with uniform distribution each supported on [0, 1], an expected

value objective function, and two expected value constraint functions. Assumption 4 holds for this

problem instance.

We apply Algorithm 1 to this problem instance using x0 = 0 ∈ IR20, N0 = 100, ∆(N) = 1/
√

N ,

and ε = δ = 1. Moreover, we let k(N) = 2N . The algorithm map AN (·) is one iteration the Polak-

He Phase 1-Phase 2 algorithm; see Section 2.6 in [25]. We refer to the iterations of Algorithm 1 with
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Candidate Confidence Intervals
Point N #iter. ψ(x∗N ) θ(x∗N ) f0(x∗N )
x∗0 100 - (−∞,−48.1472) (−431.1261, 0] (5296, 5447)
x∗100 100 302 (−∞,−2.0657) (−8.9403, 0] (3411, 3533)
x∗200 200 106 (−∞,−0.4903) (−3.5880, 0] (3439, 3521)
x∗400 400 104 (−∞, 0.5280) (−2.0762, 0] (3419, 3477)
x∗800 800 149 (−∞, 0.0672) (−1.4028, 0] (3458, 3498)
x∗1600 1600 66 (−∞,−0.0001) (−0.7915, 0] (3453, 3482)
x∗3200 3200 60 (−∞,−0.0107) (−0.4043, 0] (3462, 3482)
x∗6400 6400 75 (−∞, 0.0785) (−0.2027, 0] (3466, 3481)
x∗12800 12800 129 (−∞, 0.0125) (−0.1082, 0] (3470, 3480)
x∗25600 25600 79 (−∞, 0.0607) (−0.1085, 0] (3467, 3474)
x∗51200 51200 99 (−∞, 0.0499) (−0.0609, 0] (3467, 3472)

Table 4: Example 4: 95%-confidence intervals for ψ(x∗N ) (column 4) and f0(x∗N ) (column 6), and
90%-confidence intervals for θ(x∗N ) (column 5) for different candidate points generated by Algorithm
1.

the same sample size N as a stage. We run Algorithm 1 for ten stages and generate the candidate

points x∗0, x∗100, x∗200,..., x∗51200. For each candidate point x∗N , we compute the confidence intervals

(51) and (70) using sample size 10N (1000 for x∗0), replications M = 30 and K = 23, and L = 1.

This selection of M , K, and L results in 95% confidence intervals for ψ(x∗N ) and 90%-confidence

intervals for θ(x∗N ).

Table 4 presents the confidence intervals for the candidate points. Columns 2 and 3 give

the sample size and number of iterations used in each stage, respectively. Columns 4 and 5 give

95% confidence intervals for ψ(x∗N ) and 90% confidence intervals for θ(x∗N ), respectively. We also

compute 95% confidence intervals for f0(x∗N ) using the standard sample average estimators; see

column 6. We see that x∗N tends to become closer, as measured by θ(·), to a Fritz-John point as the

calculations progress. The ten stages required 6900 seconds of run time. The verification analysis

needed 3300 seconds.

7 Conclusions

We have developed validation analysis procedures for nonlinear, possibly nonconvex, stochastic

programs with expected value functions as both objective and constraint functions. The validation

analysis assesses the quality of a candidate solution x ∈ IRn by its proximity to a Fritz-John

stationary point as measured by the value of an optimality function at x. We construct an estimator

of the optimality function and examine its consistency, bias, and asymptotic distribution. The

estimator leads to confidence intervals for the value of the optimality function at x and, hence,

confidence intervals for the “quality” of x. We also construct an implementable algorithm for

solving smooth stochastic programs based on sample average approximations and a gradual increase
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in sample size.
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Appendix

Proof of Proposition 3 Let x ∈ Xψ. We only consider x 6= x̂ since the result trivially holds when

x = x̂. We define ψ̃(x, ·) : IRn → IR for any x′ ∈ IRn by ψ̃(x, x′) 4= max{f0(x′) − f0(x), ψ(x′)}. It

follows by the mean value theorem and (9) that for any x′ ∈ IRn and some sj ∈ [0, 1], j ∈ q0,

ψ̃(x, x′) = max
{
〈f0(x), x′ − x〉+ 1

2〈x′ − x,∇2f0(x + s0(x′ − x))(x′ − x)〉,
max
j∈q

{f j(x) + 〈f j(x), x′ − x〉+ 1
2〈x′ − x,∇2f j(x + sj(x′ − x))(x′ − x)〉}

}

≤ 1
M

max
{
〈f0(x),M(x′ − x)〉+ 1

2‖M(x′ − x)‖2, (74)

max
j∈q

{f j(x) + 〈f j(x),M(x′ − x)〉+ 1
2‖M(x′ − x)‖2}

}
.

Minimizing first the right-hand and then the left-hand side in (74) and using the fact that ψ(x)+ = 0,

we obtain that

min
x′∈IRn

ψ̃(x, x′) ≤ θ(x)/M. (75)

Using similar arguments, we also obtain that

min
x′∈IRn

ψ̃(x, x′) ≥ θ(x)/m. (76)

Let x̂′ ∈ IRn be the unique optimal solution of minx′∈IRn ψ̃(x, x′). Since ψ̃(x, x) = 0, it follows

that x̂′ ∈ Xψ. From (75), we obtain that

f0(x̂)− f0(x) = min
x′∈IRn

{f0(x′)− f0(x) | ψ(x′) ≤ 0}
≤ min

x′∈IRn
{ψ̃(x, x′) | ψ(x′) ≤ 0}

= ψ̃(x, x̂′)

≤ θ(x)/M,

which proves the right-most inequality in (10). We next prove the left-most inequality and consider

three cases.

(i) Suppose that ψ(x̂′) < ψ̃(x, x̂′) and f0(x̂′)− f0(x) = ψ̃(x, x̂′). Then,

min
x′∈IRn

ψ̃(x, x̂′) = min
x′∈IRn

{f0(x′)− f0(x) | ψ(x′) ≤ 0} = f0(x̂)− f0(x). (77)
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Hence, by(76), θ(x)/m ≤ f0(x̂)− f0(x).

(ii) Suppose that ψ(x̂′) = ψ̃(x, x̂′) and f0(x̂′)− f0(x) = ψ̃(x, x̂′). We define ĥ = x̂− x̂′. Since

x̂′ is the unconstrained minimizer of ψ̃(x, ·), it follows that the directional derivative of ψ̃(x, ·) at

x̂′ is nonnegative in all directions, i.e.,

dψ̃(x, x̂′; h) = max{〈∇f0(x̂′), h〉, dψ(x̂′, h)} ≥ 0, (78)

for all h ∈ IRn. By strict convexity of f0(·),

〈∇f0(x̂′), ĥ〉 < (f0(x̂)− f0(x))− (f0(x̂′)− f0(x)) < 0. (79)

Consequently,

dψ(x̂′, ĥ) ≥ 0. (80)

Now, let j′ ∈ q̂(x̂′) be such that dψ(x̂′; ĥ) = 〈∇f j′(x̂′), ĥ〉. Then, by the mean value theorem and

(9) ,

f j′(x̂) ≥ f j′(x̂′) + 〈∇f j′(x̂′), ĥ〉+ 1
2m‖ĥ‖2. (81)

Hence, using (80) and (76), we obtain

ψ(x̂) ≥ f j′(x̂) ≥ ψ(x̂′) + dψ(x̂′; ĥ) + 1
2m‖ĥ‖2 (82)

≥ θ(x)/m + 1
2m‖ĥ‖2.

Since ψ(x̂) ≤ 0, we find that

‖ĥ‖ ≤
√

2
m

√
−θ(x). (83)

In view of (9), Xψ is compact. Hence, there exists a constant c < ∞ such that ‖∇f0(x′)‖ ≤ c/4

for all x′ ∈ Xψ. It now follows from (79) and (76) that

f0(x̂)− f0(x) > f0(x̂′)− f0(x) + 〈∇f0(x̂′), ĥ〉
≥ θ(x)/m− ‖∇f0(x̂′)‖‖ĥ‖

≥ θ(x)− c
√−θ(x)

m
. (84)

(iii) Suppose that ψ(x̂′) = ψ̃(x, x̂′) and f0(x̂′)− f0(x) < ψ̃(x, x̂′). Then, due to the optimality

of x̂′ for ψ̃(x, ·), dψ(x̂′, x′ − x̂′) ≥ 0 for all x′ ∈ IRn. Using similar arguments as in (82), we obtain

that for any x′ ∈ Xψ,

0 ≥ ψ(x′) ≥ ψ(x̂′) + dψ(x̂′; x′ − x̂′) + 1
2m‖x′ − x̂′‖2 (85)

≥ θ(x)/m + 1
2m‖x′ − x̂′‖2

and

‖x′ − x̂′‖ ≤
√

2
m

√
−θ(x). (86)
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Hence,

‖x̂− x‖ ≤ ‖x̂− x̂′‖+ ‖x− x̂′‖ ≤ 2
√

2
m

√
−θ(x). (87)

It now follows from convexity of f0(·) and (76) that

f0(x̂)− f0(x) > 〈∇f0(x), x̂− x〉
≥ −‖∇f0(x)‖‖x̂− x‖
≥ − c

m

√
−θ(x). (88)

The left-most inequality (10) now follows as a consequence of these three cases.
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